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Abstract

With advances in digital healthcare technologies, optional therapeutic modules and tasks such as depth estimation, visual localization, active control, automatic navigation, 
and targeted drug delivery are desirable for the next generation of capsule endoscopy devices to diagnose and treat gastrointestinal diseases. Although deep learning 
applications promise many advanced functions for capsule endoscopes, some limitations and challenges are encountered during the implementation of data-driven 
algorithms, with the difficulty of obtaining real endoscopy images and the limited availability of annotated data being the most common problems. In addition, some 
artefacts in endoscopy images due to lighting conditions, reflections as well as camera view can significantly affect the performance of artificial intelligence methods, 
making it difficult to develop a robust model. Realistic simulations that generate synthetic data have emerged as a solution to develop data-driven algorithms by addressing 
these problems. In this study, synthetic data for different organs of the GI tract are generated using a simulation environment to investigate the utility and generalizability 
of the synthetic data for various medical image analysis tasks using the state-of-the-art Endo-SfMLearner model, and the performance of the models is evaluated with both 
real and synthetic images. The extensive qualitative and quantitative results demonstrate that the use of synthetic data in training improves the performance of pose and 
depth estimation and that the model can be accurately generalized to real medical data.
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Introduction

The use of conventional optical colonoscopy in early diagnosis, 
prognostic follow-up, and treatment of critical gastrointestinal 
diseases (GI) is considered the gold standard in the current 
literature [1,2]. Although colonoscopy has shown clinical efficacy 
in reducing the incidence of colorectal cancer, accessing the 
small intestine and obtaining clinically significant images are 
considered as a challenging procedure due to its complicated 
anatomical structure [3,4]. Hence, it should be performed by 
experienced clinicians that requires more time and training. In 
addition, patients suffer pain and discomfort during this invasive 
procedure, which can lead to unexpected complications. Wireless 
capsule endoscopy technology has emerged as a replacement 
for conventional endoscopes and colonoscopes to eliminate the 
aforementioned problems and to examine the entire gastrointestinal 
tract and detect lesions [5-7]. Unlike conventional endoscopes and 
colonoscopes, capsule endoscopes are pill-shaped, swallowable 

devices that require minimal preparation before the procedure 
and allow visualization of the digestive tract by reducing or even 
eliminating the dose of sedatives that should be administered to 
the patient [8,9]. In order to extend the scan time of the capsule 
endoscopy robots and enable active functions such as tissue 
sampling and therapeutic interventions, sophisticated algorithms 
are required to be integrated into actively moving capsules [10]. 
To ensure that these data-driven algorithms perform accurately in 
clinical cases, the models need to be trained with large amounts of 
annotated data. However, there are some practical barriers to the 
creation of such datasets, including privacy, time, lack of expertise 
for annotation, regulatory concerns related to data collection, 
and underrepresentation of rare cases. Moreover, some artefacts 
encountered in real endoscopy images due to the lightning 
conditions and camera properties can adversely affect the ability 
of conventional models. Therefore, synthetic data generation and 
data augmentation methods can be effectively used to improve 
the performance of artificial intelligence algorithms that are 
impaired due to limited real endoscopy data [11-13]. To this end, 
Mahmood and Durr [14] proposed an adversarial training based 
approach to generate synthetic endoscopy images and proved 
the success of their approach in monocular depth estimation 
applications. In [15], Deep Convolutional Generative Adversarial 
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Networks (GAN) was utilized to produce synthetic images of 
malignant mammograms in order to leverage the classification 
performance of a network in an imbalanced dataset and further 
analyzes were performed in [16] to determine the quality and 
realism of the generated images. Although studies on medical 
image synthesis have been accelerated, especially after the 
advances in GAN, training neural networks on synthetic data may 
not be generalizable to real medical images because few models 
correctly transfer the morphological features of real images to the 
simulated images. In our previous work [17], a virtual simulation 
environment was developed using advanced imaging and image 
processing techniques to generate fully labelled realistic synthetic 
data consisting of the topology and tissue of the original organ 
for tasks including disease classification, area coverage and visual 
odometry. In this new study, a further investigation is presented 

to explore the applicability and generalizability of synthetic data 
to neural network performance on both real and synthetic image 
domains by creating simulated endoscopy images for the organ 
instances stomach, small intestine and colon of the gastrointestinal 
tract (GI) using the realistic virtual capsule environment presented 
in [17]. 

The rest of this paper is organised as follows: In the materials and 
methods section, the simulation environment is described and the 
pipeline for generating synthetic images is presented. In the results 
section, the efficiency of synthetic data using the state-of-the-art 
Endo-SfMLearner model for depth and pose estimation use-cases 
is investigated and the obtained results are presented. Finally, in 
the discussion and conclusion section, future work is discussed 
and some concluding remarks are made.
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Figure 1. The pipeline for 3D synthetic organ generation and tissue integration is shown schematically. To reconstruct a 3D organ model, computed tomography scans 
(CT) of patients are used which is followed by the process of removing artifacts and reflections in the endoscopy image to create mucosal tissue layers from real endos-
copy images. Then, a uniform color region is selected and this region is flattened to form the main mucosal tissue. For the integration of the vessels into the mucosal 
tissue, the vessels are extracted from the real endoscopy image using MATLAB and the extracted vessels are added to the tissue image using Gaussian distribution, 
resulting in the corresponding vascular mesh.

Materials and Methods

Generation of 3-Dimensional Organs in the Simulation 
Environment

The simulation environment is created using Unity, a real-time 
3-dimensional (3D) design and development platform, with the 
integration of ML -Agent [18] and SOFA [19] as described in [17]. 
SOFA is an open source software library designed to facilitate 
the development and testing of medical simulations by enabling 
the creation of complex medical simulations. ML -Agent, on the 
other hand, allows Unity to be used as an interactive stage for 
training intelligent agents with machine learning algorithms. To 
mimic the mechanics of organ deformation, SofaAPAPI-Unity3D 
is integrated, an interface that allows Unity PhysX Engines and 
SOFA to use particularly perfect models for tissue deformation.

Computed tomography images (CT) in DICOM format, openly 
accessible and anonymized in Cancer Image Archives (TCGA), 
are used to accurately identify and integrate the 3D geometry of 
the organs of the gastrointestinal tract in synthetic endoscopy 

data generation with the simulation environment. Since the 
archive contains different datasets for different body parts, a set 
of 46 subjects [20] for the stomach and 825 subjects for the small 
intestine and colon [21] are identified as reference and included 
in the study. However, since the dataset is divided into two 
different subgroups based on the position of the patient (prone 
and supine), the supine sets are included in the study considering 
the positions of the patients during capsule endoscopy. An open-
source medical imaging application called InVesalius is used to 
reconstruct 3D organ models from computed tomography scans. 
The reconstructed 3D model is exported to Blender and MeshLab 
for processing. To create mucosal overlays, the Kvasir dataset 
[22] is used, which contains real endoscopy images categorized 
by different organs of the GI tract. During the generation of main 
mucosal tissues from this dataset, different endoscopy images are 
combined in the RGB color scale and placed as tissue overlays on 
the inner lumen surface of the model to produce faithful mucosal 
walls without gaps. Vascular networks are then extracted from 
the endoscopy images and applied to the mucosal tissue images 
using empirically determined means and standard deviations and 
a random distribution for vessel size, rotation, and position. In 
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the final step, the 3D model is reconstructed and the mesh models 
are decomposed into rectangular segments which are uniformly 
mirrored onto the UV texture maps generated by the models in a 
repetitive manner. The pipeline of 3D organ generation is shown 
in Figure 1.

Synthetic Image Generation

To obtain realistic images from the simulation environment, a 

cinematic rendering tool is used to mimic the imperfections such 
as chromatic aberration, visual distortion, specular reflection, 
and field of view that may occur in real endoscopy images due to 
lightning conditions and camera characteristics.  Three examples 
of endoscopic videos with pixel-wise depth and pose references at 
320x320 pixels, 30fps, containing 2,500 frames of the stomach, 
6,700 frames of the small intestine, and 8,200 frames of the colon, 
are created by moving the monocular camera-enabled virtual 
capsule through the 3D virtual lumen of the gastrointestinal tract. 

Figure 2. Depth estimation results of the Endo-SfMLearner network trained with synthetic data. a The synthetic raw images generated by the simulation environment 
are given with the corresponding ground truth depth information, depth estimation and error heatmaps. b For real endoscopy, the Endo-SfMLearner model is tested with 
the Kvasir and Pillcam datasets for stomach and colon, respectively. Since no reference depth information exists for either dataset, raw images are provided with their 
depth estimations. The qualitative results illustrate that the model trained with synthetic images gives better estimations for both real and virtual endoscopy data.

Results 

To show the efficiency and usefulness of the synthetically generated 
images, the evaluations are performed in use-cases for depth and 
pose estimation, and the obtained results are analysed in detail in 
the following subsections.

Depth Estimation

To investigate the utility of synthetic data on neural network 
performance in pixel-wise depth estimation, the Endo-SfMLearner 
algorithm [23] is trained with synthetically generated data only 
and then tested with both synthetic and real endoscopic images. 
The training and validation sets consist of 2,400 and 600 images, 
respectively. The real endoscopy test set consists of images taken 
in the colon using a Pillcam with a binocular camera and the 
images from the Kvasir dataset. The neural network is set up with 
a learning rate of 10-4 and trained for 180 epochs with a batch 
size of 4 using ADAM optimization. In Figure 2, depth estimation 
results acquired from each test dataset are illustrated. Since the 
simulation environment can provide reference depth information 
for each image generated, error heat maps are also produced in 
order to demonstrate the predictive success of the model. From 

the error heatmaps, it can be concluded that the model makes 
good predictions for pixels representing distant regions, which is 
confirmed by a decrease in errors in these regions. On the other 
hand, only estimations are presented for real endoscopy images 
since their reference depth information is not available.  As can be 
seen in each case, the boundaries and characteristics of areas that 
differ from the surrounding tissue not only in structure but also 
in texture are successfully recognized by the model. Overall, the 
results show that deep learning models trained on synthetic images 
in a cross-dataset environment exhibit sufficient generalization 
performance in depth estimation.

Pose Estimation

For a comparative analysis, two different training scenarios are 
designed on the Endo-SfMLearner model for the pose estimation 
use-case. In the first case, the artificial neural network is trained on 
a subset of the EndoSLAM dataset [23] with real porcine samples 
containing 6-DoF ground truth pose values, with 2,000 input 
images, a batch size of 4, and a learning rate of 10-4 for 250 epochs. 
In the second case, the neural network model is fine-tuned with real 
endoscopy images after pre-training with synthetic data, including 
2,000 images generated from the simulation environment, using 
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the same hyperparameters as in the previous case. Both models are 
tested with two trajectories of EndoSLAM data containing 1,000 
and 900 images of the small intestine and colon, respectively. To 
assess the performance of the models, three evaluation metrics are 
used: (1) Absolute Trajectory Error (ATE), which indicates the 
average difference between the reference trajectory per image, (2) 
Translational Relative Pose Error (RPEtrans), and (3) Rotational 
Relative Pose Error (RPErot) which measure the deviation from 
the reference and estimated trajectories in terms of translational 
and rotational motions, respectively. ATE is expressed as follows:

ATE = d(x,y)                                                              	 (1)

ATE = d(x,y)	 (1)

where d(x,y) is the Euclidean distance, x and y represent 
the estimated global position of the camera and its reference 
counterparts, respectively. Since both the reference and estimated 
plots are independent, a solid transformation in x  is used to form 
a solution that maps the estimated trajectories to y reference 

trajectories. RPEtrans and RPErot are described as follows:

where A is the relative pose error and X and Y are the estimated and 
reference poses, respectively. In Figure 3, the evaluation results of 
the pose estimation for both scenarios are quantitatively presented 
with the mean and standard deviation of these metrics. The results 
indicate that the virtually pre-trained models perform better with 
22.18 and 34.34 [cm] ATE for 120.14 and 116.99 [cm] trajectories 
in small intestine and colon compared to the models trained 
only on real data with 33.28 and 53.42 [cm] ATE for the same 
trajectories, respectively. Accordingly, it can be observed that pre-
training the neural network model with synthetic dataset enhances 
the performance of the algorithm in the final pose estimation.

Figure 3. Pose estimation results in real endoscopy data. The Endo-SfMLearner neural network model is trained in two different scenarios. In the first case, only real 
endoscopy images from the EndoSLAM dataset are used for training. In the second case, the model is fine-tuned with real data after  pre-training with synthetic data. Both 
models are tested with small intestine and colon trajectories of the real dataset and ATE, translational and rotational RPE scores are used for quantitative evaluations. The 
numerical results show that virtual pre-training improves the approximation of the final poses in all test cases

Figure 4. Pose estimation results in synthetic and real endoscopy data. The Endo-SfMLearner model pre-trained with synthetic data was tested in the stomach trajectory 
of both synthetic and EndoSLAM datasets. In the first scenario, 300 synthetic and 1450 real endoscopy images are used for training while the second scenario consists 
of 600 synthetic and 900 real endoscopy images. The results are shown qualitatively with the reference and estimated trajectory plots whereas quantitatively with ATE, 
translational and rotational RPE. As can be seen, the number of synthetic data used in the training set improves the performance in pose estimation for both datasets. 
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As a further investigation, the Endo-SfMLearner model is trained 
in two different scenarios to test the effect of the number of 
synthetic data used in the pre-training set. In the first case, the 
model is pre-trained with 300 synthetic images and fine-tuned 
with 1450 real endoscopy images from the EndoSLAM dataset. 
In the second scenario, the number of synthetic images in the pre-
training set is increased to 600 while the number of real endoscopy 
images in the fine-tune set is reduced to 900. Each model is tested 
on both synthetic and real endoscopy images of the stomach, and 
the results are presented qualitatively and quantitatively in Figure 
4. The predicted trajectory curves in scenario two are more able to 
follow the ground truth trajectories in both real and synthetic test 
data, which is confirmed by the quantitative results showing the 
efficiency of synthetic data based training for situations where less 
real data is available and more synthetic data is used for training 
the neural network.

Discussion 

In this study, fully-labelled and realistic synthetic endoscopic 
images were generated in a virtual environment corresponding to 
the topology and tissue of the organs of the gastrointestinal tract 
to facilitate the application of deep learning based algorithms for 
simulation to real transfer. The performance of a state-of-the-art 
method was tested on two different tasks using synthetic data in 
the training phase. Both qualitative and quantitative results showed 
that the models trained on synthetic data can perform successfully 
on real medical data, even when the training set consists only of 
synthetic images. Accordingly, the use of synthetic data improves 
the performance of deep learning models, which can increase the 
efficiency of studies related to endoscopy by addressing common 
technical problems in surgical operations. As a future study, we 
plan to create disease classes in the virtual environment to analyse 
the quality of the generated images in terms of anatomical features 
and diversity, and to incorporate modalities for segmentation and 
classification problems.
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